Bibliography in Software Integrated barcode 3/9 in Software Bibliography UPC A for .NET

Bibliography using barcode generation for none control to generate, create none image in none applications.upc-a ence Innovativ none for none e Applications of Arti cial Intelligence, pp. 564 569. AAAI Press/The MIT Press.

[292] Domingos, Pedro, and Michael J. Pazzani. 1997.

On the optimality of the simple Bayesian classi er under zero-one loss. Machine Learning 29(2-3):103 130. url: citeseer.

html. [265] Downie, J. Stephen.

2006. The Music Information Retrieval Evaluation eXchange (MIREX). D-Lib Magazine 12(12).

[xviii] Duda, Richard O., Peter E. Hart, and David G.

Stork. 2000. Pattern Classi cation, 2nd edition.

Wiley-Interscience. [264, 343] Dumais, Susan, John Platt, David Heckerman, and Mehran Sahami. 1998.

Inductive learning algorithms and representations for text categorization. In Proc. CIKM, pp.

148 155. ACM Press. doi: http://doi.

288651. [261, 306, 319] Dumais, Susan T. 1993.

Latent semantic indexing (LSI) and TREC-2. In Proc. TREC, pp.

105 115. [382, 383] Dumais, Susan T. 1995.

Latent semantic indexing (LSI): TREC-3 report. In Proc. TREC, pp.

219 230. [382, 383] Dumais, Susan T., and Hao Chen.

2000. Hierarchical classi cation of Web content. In Proc.

SIGIR, pp. 256 263. ACM Press.

[319] Dunning, Ted. 1993. Accurate methods for the statistics of surprise and coincidence.

Computational Linguistics 19(1):61 74. [265] Dunning, Ted. 1994.

Statistical identi cation of language. Technical Report 94-273, Computing Research Laboratory, New Mexico State University. [43] Eckart, Carl, and Gale Young.

1936. The approximation of a matrix by another of lower rank. Psychometrika 1:211 218.

[383] El-Hamdouchi, Abdelmoula, and Peter Willett. 1986. Hierarchic document classi cation using Ward s clustering method.

In Proc. SIGIR, pp. 149 156.

ACM Press. doi: http://doi.acm.


[367] Elias, Peter. 1975. Universal code word sets and representations of the integers.

IEEE Transactions on Information Theory 21(2):194 203. [98] Eyheramendy, Susana, David Lewis, and David Madigan. 2003.

On the Naive Bayes model for text categorization. In Proc. International Workshop on Arti cial Intelligence and Statistics.

Society for Arti cial Intelligence and Statistics. [265] Fallows, Deborah, 2004. The internet and daily life.

url: Internet and Daily Life.

pdf. Pew/Internet and American Life Project. [xv] Fayyad, Usama M.

, Cory Reina, and Paul S. Bradley. 1998.

Initialization of iterative re nement clustering algorithms. In Proc. KDD, pp.

194 198. [345] Fellbaum, Christiane D. 1998.

WordNet An Electronic Lexical Database. MIT Press. [177] Ferragina, Paolo, and Rossano Venturini.

2007. Compressed permuterm indexes. In Proc.

SIGIR. ACM Press. [59] Forman, George.

2004. A pitfall and solution in multi-class feature selection for text classi cation. In Proc.

ICML. [265] Forman, George. 2006.

Tackling concept drift by temporal inductive transfer. In Proc. SIGIR, pp.

252 259. ACM Press. doi: http://doi.

1148216. [265] Forman, George, and Ira Cohen. 2004.

Learning from little: Comparison of classi ers given little training. In PKDD, pp. 161 172.

[308] Fowlkes, Edward B., and Colin L. Mallows.

1983. A method for comparing two hierarchical clusterings. Journal of the American Statistical Association 78(383):553 569.


[368] Fox, Edward A., and Whay C. Lee.

1991. FAST-INV: A fast algorithm for building large inverted les. Technical report, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA.

[76] Fraenkel, Aviezri S., and Shmuel T. Klein.

1985. Novel compression of sparse. Microsoft Office Word Website P1: KRU/IRP ir book CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8. Bibliography bit-strings Preliminary report. In Combinatorial Algorithms on Words, NATO ASI Series Vol F12, pp. 169 183.

Springer. [98] Frakes, William B., and Ricardo Baeza-Yates (eds.

). 1992. Information Retrieval: Data Structures and Algorithms.

Prentice-Hall. [451, 461] Fraley, Chris, and Adrian E. Raftery.

1998. How many clusters Which clustering method Answers via model-based cluster analysis. Computer Journal 41(8):578 588.

[345] Friedl, Jeffrey E. F. 2006.

Mastering Regular Expressions, 3rd edition. O Reilly. [17] Friedman, Jerome H.

1997. On bias, variance, 0/1 loss, and the curse-ofdimensionality. Data Mining and Knowledge Discovery 1(1):55 77.

[265, 292] Friedman, Nir, and Moises Goldszmidt. 1996. Building classi ers using bayesian networks.

In Proc. National Conference on Arti cial Intelligence, pp. 1277 1284.

[213] Fuhr, Norbert. 1989. Optimum polynomial retrieval functions based on the probability ranking principle.

TOIS 7(3):183 204. [138] Fuhr, Norbert. 1992.

Probabilistic models in information retrieval. Computer Journal 35 (3):243 255. [216, 320] Fuhr, Norbert, Norbert Govert, Gabriella Kazai, and Mounia Lalmas (eds.

). 2003a. INitiative for the Evaluation of XML Retrieval (INEX).

Proc. First INEX Workshop. ERCIM.

[198] Fuhr, Norbert, and Kai Gro johann. 2004. XIRQL: An XML query language based on information retrieval concepts.

TOIS 22(2):313 356. url: http://doi.acm.

org/ 10.1145/984321.984326.

[198] Fuhr, Norbert, and Mounia Lalmas. 2007. Advances in XML retrieval: The INEX initiative.

In Proc. International Workshop on Research Issues in Digital Libraries. [198] Fuhr, Norbert, Mounia Lalmas, Saadia Malik, and Gabriella Kazai (eds.

). 2006. Advances in XML Information Retrieval and Evaluation, 4th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2005.

Springer. [198] Fuhr, Norbert, Mounia Lalmas, Saadia Malik, and Zolt n Szl vik (eds.).

2005. Ada a vances in XML Information Retrieval, Third International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004. Springer.

[198, 460, 465] Fuhr, Norbert, Mounia Lalmas, and Andrew Trotman (eds.). 2007.

Comparative Evaluation of XML Information Retrieval Systems, 5th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2006. Springer. [198, 456, 458] Fuhr, Norbert, Saadia Malik, and Mounia Lalmas (eds.

). 2003b. INEX 2003 Workshop Proceedings.


[198, 451, 458] Fuhr, Norbert, and Ulrich Pfeifer. 1994. Probabilistic information retrieval as a combination of abstraction, inductive learning, and probabilistic assumptions.

TOIS 12 (1):92 115. doi: http://doi.acm.


[138] Fuhr, Norbert, and Thomas Rolleke. 1997. A probabilistic relational algebra for the integration of information retrieval and database systems.

TOIS 15(1):32 66. doi: http://doi.acm.


[200] Gaertner, Thomas, John W. Lloyd, and Peter A. Flach.

2002. Kernels for structured data. In International Conference on Inductive Logic Programming, pp.

66 83. [319] Gao, Jianfeng, Mu Li, Chang-Ning Huang, and Andi Wu. 2005.

Chinese word segmentation and named entity recognition: A pragmatic approach. Computational Linguistics 31(4):531 574. [43] Gao, Jianfeng, Jian-Yun Nie, Guangyuan Wu, and Guihong Cao.

2004. Dependence language model for information retrieval. In Proc.

SIGIR, pp. 170 177. ACM Press.

Garcia, Steven, Hugh E. Williams, and Adam Cannane. 2004.

Access-ordered indexes. In Proc. Australasian conference on Computer science, pp.

7 14. [137] Garcia-Molina, Hector, Jennifer Widom, and Jeffrey D. Ullman.

1999. Database System Implementation. Prentice-Hall.

[77] Gar eld, Eugene. 1955. Citation indexes to science: A new dimension in documentation through association of ideas.

Science 122:108 111. [439]. P1: KRU/IRP ir none for none book CUUS232/Manning 978 0 521 86571 5 May 27, 2008 12:8.
Copyright © . All rights reserved.